
Proactive bug finding

Sam Hocevar (sam@zoy.org)
22 June 2007

DebConf’07, Edinburgh

Take advantage of the Debian architecture
to find bugs

Summary

● find bugs in the sources
● search the code
● gcc warnings explained
● build & buildd logs

●bugs in binary packages
● Debian QA tools
● find regressions

● runtime bugs
● test suites
● fuzzing

Part 1

find bugs in the sources

Code search

● full audits
● expensive (time, skills, tools)
● only worth it for critical components
● Debian Security Audit Project

http://www.debian.org/security/audit/
● definitely needed, but...

● partial audits, quick skimming
● cheap, fast, automated
● 20% of the energy to find 80% of the bugs
● by no ways perfect, but finding a bug never

hurts
● grep the code, grep the build logs

A common bug (1)

void write_long(char *buffer, long i)
{
 long * tmp = buffer;
 tmp[0] = i;
}

●may work depending on buffer, but
may crash at random on arm, sparc...

●gcc emits a warning:
warning: initialization from
incompatible pointer type

A common bug (2)

void write_long(char *buffer, long i)
{
 long * tmp = (long *)buffer;
 tmp[0] = i;
}

● generates the same code
●gcc doesn’t say anything!
● this kind of bug needs to be searched

directly in the code:
grep '(*long *\(int *\|\)*)'

A common bug (3)

void write_long(char *buffer, long i)
{
 memcpy(buffer, &i, 4);
}

●no alignment issues now
●gcc will inline memcpy() for speed
●but will only write half the long integer

on sparc, amd64...
● cannot be automatically found, but a

few clever regexes can help

A common bug (4)

void write_long(char *buffer, long i)
{
 memcpy(buffer, &i, sizeof(i));
}

● this is one correct way to do it

●bonus hint: use #include <stdint.h>
● guaranteed int8_t, int32_t, etc.
● use it in new applications
● can be useful to port old i386 applications

Static code search

●unpack the whole source archive
1. get a big hard drive (at least 110GiB)
2. use debmirror
3. untar everything
● don’t forget tarball-in-tarball packages

● grep through the code
● think of all filenames (.C, .cpp, .c++,
.cxx...)

● or just grep through everything for safety
●use trial and error to think of ways to

get rid of false positives

Google Code Search (1)

●http://codesearch.google.com/

●uses regexes, not usual Google syntax
● incredibly fast
●has limitations, though

● far from having all the code that’s in Debian
● no multiline search
● no easy way to ignore false positives

Google Code Search (2)

Static analysis tools in Debian

●rats
● does C, C++, PHP, Perl, Python
● rather limited but still finds a lot of things

●pscan
● only C, focuses on format strings

●jlint
● checks Java code

●pychecker
● checks Python code

●Google “static code analysis” for more

Compiler warnings

●what do they tell?
● ambiguities, errors in the code
● not always bugs
● but they’re emitted for a reason

●why should you look at them?
● because your upstream doesn’t have access

to our variety of different architectures
●know what they mean first

● blindly bypassing them could create bugs

Activate compiler warnings (1)

●which warnings do I want?
● gcc has some warnings by default
● you always want -Wall
● -W can be useful

● unused arguments
● weird C or C++ constructs

● lots of other useful ones
● -Wpointer-arith -Wcast-align -Wshadow
-Wnested-externs -Wstrict-prototypes
-Waggregate-return -Wmissing-prototypes
-Wcast-qual -Wsign-compare...

● seldom activated by upstream

Activate compiler warnings (2)

● autotools packages
● in debian/rules:
CFLAGS=”-Wall -W -Whatever -g”
CFLAGS=”$(CFLAGS)” ./configure ...
● the package may override the flags

●other packages
● on a case by case basis
● usually setting CFLAGS at build time works

Activate compiler warnings (3)

●what if upstream doesn’t cooperate?
● weird build systems
● output redirected to /dev/null (eg. libtool)

●makewrap: LD_PRELOAD mechanism
● LD_PRELOAD=makewrap.so debian/rules

● wraps calls to execve(), execvp()
● adds missing compiler warning flags
● prevents /dev/null redirection
● will be released soon(ish)

makewrap in action

Other compiler warnings (1)

●implicit declaration of function
‘foo’
● usually a missing header include

● compiler will assume foo() returns int
● what if foo() actually returns a pointer?

● compiler will infer argument types
● what if an implicit cast was expected?

Other compiler warnings (2)

●suggest parentheses around
assignment used as truth value
● not a bug, but ignoring it could make you

ignore other bugs
● if you mean if(x = 5), use if((x = 5))

●‘x’ might be used uninitialized
in this function
● only static variables are initialised to zero

Why use the buildd logs?

● all the data is in one place
● http://buildd.debian.org/
● text, easily greppable

● they have all the architectures
● ...except yours; it would be nice to have our

own build logs available, too
● builds are not necessarily consistent across

architectures (pointer sizes vary, system
headers vary)

Part 2

bugs in binary packages

Debian QA tools: lintian

●what it does
● checks source and binary packages
● interprets the Debian policy
● machine-readable output

E: libk1: old-fsf-address-in-copyright-file
W: libk1: shlib-without-dependency-information
lib/libk.so.1

E: libk1: shlib-with-executable-bit
lib/libk.so.1 0755

● easily automated (lintian.debian.org)

Create lintian checks

● the lintian process
● unpacks packages in a laboratory
● adds meta-information to the lab (list of

scripts, objdump information...)
● runs checks on the lab contents

●what is a check?
● /usr/share/lintian/checks/blah

● Perl code implementing run()
● runs on the lab contents
● calls the tag subroutine when errors are found

● /usr/share/lintian/checks/blah.desc
● verbose description of the tags

Improve lintian.debian.org

● add a history to answer useful queries
● which warnings/errors appeared in my last

upload? in the last lintian upgrade?
● which package uploads fixed a given tag?
● which packages saw the same tags appear?

can I help fix them the same way?
●how to implement this?

● SQL database
● use mole?
● proof of concept here:
svn://svn.debian.org/svn/sam-hocevar/lintian

New interface example

Debian QA tools: linda

●very similar to lintian
● same output format
● different language (Python)
● slightly different checks

●which one should I use?
● both, of course

Create linda checks

● the linda process
● similar to lintian (lab + checks)

●linda checks
● /usr/share/linda/checks/blah.py

● Python class deriving from LindaChecker
● runs on the lab contents
● calls signal_error when errors are found

● /usr/share/linda/data/blah.data
● list of tag types (warnings, errors...)

● /usr/share/linda/po/{en,de,..}.gmo
● verbose and i18n’ed descriptions of the tags

Why create new checks?

● it’s not only about the policy
● general QA stuff
● transitions

● examples
● packages with a menu file but no .desktop
● packages with no icons
● X-Vcs control fields
● some ignored DEB_BUILD_OPTIONS flags
● extract font copyright information
● [insert your own personal crusade here]

Debian QA tools: piuparts

●how does it work?
● debootstraps a minimal system
● installs package
● removes package
● tests for cruft or errors
● can check upgrades or mass-upgrades

● it takes time, but you should use it!
(come on, everyone already knows you don’t

test your own packages)

Extending piuparts

●why?
● because the framework is here
● check for robustness before the user can

●what?
● corrupt /var/cache, see what happens
● check packages with /bin/sh set to zsh,
bash...

● not necessarily “bugs”for the policy, but
often worth fixing

●how?
● I don’t know yet...

Part 3

runtime bugs

Test suites

●upstream software sometimes has them
● can be activated at build time? do it!
● tired of rebuilding your package? implement
DEB_BUILD_OPTIONS=nocheck (#416450)

● try to remain cross-buildable
ifeq ($(DEB_BUILD_GNU_TYPE), $(DEB_HOST_GNU_TYPE))
 $(MAKE) -C testsuite
endif

●you can create one yourself
● not really your job
● but bugs linked with other packages might

reappear

Fuzzing

● the idea
● alter a program’s input and watch its

behaviour
● expose bugs

● data is often user-contributed (web, e-mail)
● file parsers, interpreters are complicated
● can have security implications

● quick
● still not the ultimate bug-finding solution
● but any bug found is worth fixing

Presenting zzuf

●LD_PRELOAD fuzzing approach
● no modification or recompilation required
● can fuzz files, but also DVDs, network...

● fully automated
● checks for SIGSEGV, SIGABRT...
● checks for memory usage
● checks for infinite loops

● reproducible behaviour
● can be used in batch mode until a bug is

found
● ideal for testsuites

zzuf example (1) - cat

zzuf example (2) - cat

zzuf example (3) - file

zzuf example (4) - file

zzuf example (5) - giftopnm

zzuf example (6) - antiword

Other fuzzing software

●hachoir
● http://hachoir.org/
● multiple purpose fuzzing, like zzuf
● far cleverer than random fuzzing, attacks

with knowledge of the file format
● has parsers for many file formats

●WebFuzzer (SQL injection, XSS), ISIC (IP
stacks), SPIKEFile, radiusfuzzer, fuzz,
netsed (network)...

●Google for “fuzzing”, “fuzz testing”,
“fault injection”...

Fuzzing as a testsuite

●why do this?
● cheap way to create a testsuite
● build-depend on a fuzzer, test at build-time
● we have different architectures with

different bugs and behaviours
● using a different random seed each time

means better chances to find a bug
● a few warnings

● be reasonable, don’t stress the buildds!
● think before deciding to make the build fail

Test suites for GUI apps

●use the xvfb package
● has an xvfb-run script

●warnings
● you may need additional build dependencies
● be sure your application exits!

Thanks!

●Any questions?

Slides available on
http://sam.zoy.org/lectures/

