Proactive bug finding

Take advantage of the Debian architecture
to find bugs

Sam Hocevar (sam@zoy.org)
22 June 2007
DebConf o7, Edinburgh

Summary

e find bugs in the sources
® gearch the code
® gcc warnings explained
e build & buildd logs

® bugs in binary packages
e Debian QA tools
e find regressions

e runtime bugs
» test suites
e fuzzing

Part 1

find bugs in the sources

@,

Code search

e full audits

® expensive (time, gkills, tools)
e only worth it for critical components

e Debian Security Audit Project
http://www.debian.org/security/audit/

e definitely needed, but...
e partial audits, quick skimming
e cheap, fast, automated
e 20% of the energy to find 80% of the bugs
e by no ways perfect, but finding a bug never
hurts
e grep the code, grep the build logs

A common bug (1)

void write_ long(char *buffer, long 1)

{
long * tmp = buffer;
tmp[0] = 1;

}

® may work depending on buffer, but
may crash at random on arm, sparc...

® gcc emits a warning:
warning: initialization from
incompatible pointer type

A common bug (2)

void write long(char *buffer, long 1)

{
long * tmp = (long *)buffer;
tmp[0] = 1;

}

® generates the same code
e gcc doesn’t say anythingl
e this kind of bug needs to be searched

directly in the code:
grep '(*long *\(int *\|\)*)'

A common bug (3)

void write long(char *buffer, long 1)

{
}

memcpy(buffer, &1, 4);

® no alignment issues now

e gcc will inline memcpy () for speed

e but will only write half the long integer
on sparc, amdés...

e cannot be automatically found, but a
few clever regexes can help

A common bug (4)

void write_ long(char *buffer, long 1)

{
}

memcpy(buffer, &1, sizeof(1));

e this is one correct way to do it

e bonus hint: use #include <stdint.h>
e guaranteed 1nt8 t, 1nt32 t, etc.
e use it in new applications
e can be useful to port old 1386 applications

Static code gearch

e unpack the whole source archive
1. get a big hard drive (at least 1103iB)
2. use debmirror
3. untar everything
e don't forget tarball-in-tarball packages
e grep through the code
e think of all filenames (.C, .cpp, .C++,
S CXXd)
e or just grep through everything for safety

e use trial and error to think of ways to
get rid of false positives

(roogle Code Search (1)

e http://codesearch.google.com/

® uses regexes, not usual Google syntax
e incredibly fast

® hag limitations, though
e far from having all the code that’s in Debian
e no multiline search
e no easy way to ignore false positives

Groogle Code Search (2)

inty *#*) *char Search | Advanced Code Search

GOugéﬁ N

" Code Search®/

Code Results 1 - 10 of about 8,000. (0.21 seconds)

mozilla/security/nss/lib/util/quickder.c - 42 identical

498 . /* set the type in the union here */
int *which = (int *)((char *)dest + templateEntry->offset);
*which = (int)choiceEntry->size;

ftp.mozilla.org/.../mozilla-source-1.7 .6.tar.bz? - Mozilla - C

httpd-2.0.59/srclib/apr-iconv/lib/iconv_ces_is02022.c - 53 identical

86: ces->data = state;
state->shift_tab = (int*)((char*)state + stsz);
state->org_shift_tab = ces->desc->data;

www.ibiblio.org/.../httpd-2.0.59-win32-src.zip - BSD - C

cpio-2.6/lib/argp-help.c - 14 identical

197: else
*(int *)((char *)&uparams + un->uparams_offs) = val;
break;

Static analysis tools in Debian

® rats
e does C, C++, PHP, Perl, Python
e rather limited but still finds a lot of things
® pscan
e only C, focuses on format strings
ejlint
e checks Java code
e pychecker
e checks Python code
e Google “static code analysis” for more

Compiler warnings

e what do they tell?
e ambiguities, errors in the code
e not always bugs
e but they're emitted for a reason
e why should you look at them?
e because your upstream doesn’t have access
to our variety of different architectures

e know what they mean first
® blindly bypassing them could create bugs

Activate compiler warnings (1)

e which warnings do I want?
e gcc has some warnings by default
e you always want -Wall
e -W can be useful

unused arguments
weird C or C++ constructs

e lots of other useful ones
-Wpointer-arith -Wcast-align -Wshadow
-Wnested-externs -Wstrict-prototypes
-Waggregate-return -Wmissing-prototypes
-Wcast-qual -Wsign-compare...

® seldom activated by upstream

Activate compiler warnings (2)

e autotools packages
* in debian/rules:
CFLAGS="-Wall -W -Whatever -g”
CFLAGS="$(CFLAGS)"” ./configure ...
e the package may override the flags
e other packages
® on a case by case basis
o usually setting CFLAGS at build time works

Activate compiler warnings (3)

e what if upstream doesn’t cooperate?
e weird build systems
o output redirected to /dev/null (eg. libtool)

e makewrap: LD PRELOAD mechanism
e LD PRELOAD=makewrap.so debian/rules

e wraps calls to execve(), execvp()
¢ adds midsing compiler warning flags
e prevents /dev/null redirection

e will be released soon(ish)

makewrap in action

then mv -f ".deps/libmp4_plugin_la-mp4.Tpo" ".deps/libmp4_plugin_la-mp4.Plo"; \
else rm -f ".deps/libmp4_plugin_la-mp4.Tpo"; exit 1; \
fi
mkdir .libs
ia64-linux-gnu-gcc -DHAVE_CONFIG_H -I. -I. -I../../.. -DSYS_LINUX -I../../../include -D_FILE_
*** makewrap warning *** "iab64-linux-gnu-gcc" called with "-Wall", adding "-W -Wsign-compare"
if /bin/sh ../../../libtool --mode=compile iab4-linux-gnu-gcc -DHAVE_CONFIG H -I. -I. -I../../
-c -0 libmp4_plugin_la-libmp4.lo "test -f 'libmp4.c' || echo './' libmp4.c; \
then mv -f ".deps/libmp4_plugin_la-libmp4.Tpo" " .deps/libmp4d_plugin_la-libmp4.Plo"; \
else rm -f ".deps/libmp4_plugin_la-libmp4.Tpo"; exit 1; \
fi
ia64-linux-gnu-gcc -DHAVE_CONFIG_H -I. -I. -I../../.. -DSYS_LINUX -I../../../include -D_FILE_
*** makewrap warning *** "i1ab64-linux-gnu-gcc" called with "-Wall", adding "-W -Wsign-compare"
libmp4.c: In function 'MP4_ReadBox_url':

libmp4.c:698: warning: comparison between signed and unsigned
libmp4.c:698: warning: signed and unsigned type in conditional expression
libmp4.c:698: warning: comparison between signed and unsigned
libmp4.c:698: warning: signed and unsigned type in conditional expression
libmp4.c:698: warning: comparison between sighed and unsigned
libmp4.c:698: warning: signed and unsigned type in conditional expression
libmp4.c: In function 'MP4_ReadBox_urn':

libmp4.c:720: warning: comparison between signhed and unsigned
libmp4.c:720: warning: signed and unsigned type in conditional expression
libmp4.c:720: warning: comparison between signed and unsigned
libmp4.c:720: warning: signed and unsigned type in conditional expression
libmp4.c:720: warning: comparison between signed and unsigned
libmp4.c:720: warning: signed and unsigned type in conditional expression

Other compiler warnings (1)

e 1mplicit declaration of function
‘foo’
e usually a missing header include

e compiler will assume foo() returns int
e what if foo() actually returns a pointer?

e compiler will infer argument types
e what if an implicit cast wag expected?

Other compiler warnings (2)

e suggest parentheses around

assignment used as truth value
e not a bug, but ignoring it could make you
ighore other bugs
¢ if you mean 1f(x = 5), use 1f((x = 5))

e ‘x’ might be used uninitialized

in this function
e only static variables are initialised to zero

Why use the buildd logs?

e all the data is in one place
» http://buildd.debian.org/
o text, easily greppable
e they have all the architectures
e ...except yours; it would be nice to have our
own build logs available, too
e builds are not necesgsarily consistent across
architectures (pointer sizes vary, system
headers vary)

Part 2

bugs in binary packages

@,

Debian QA tools: Lintian

e what it does
® checks source and binary packages
e interprets the Debian policy
e machine-readable output

E: 1ibkl: old-fsf-address-in-copyright-file

W: libkl: shlib-without-dependency-information
lib/1l1ibk.so.1l

E: libkl: shlib-with-executable-bit
lib/libk.so.1l 0755

® easily automated (Lintian.debian.org)

Create lintian checks

e the lintian process
» unpacks packages in a laboratory
e adds meta-information to the lab (list of
scripts, objdump information...)
e runs checks on the lab contents

e what is a check?

e /usr/share/lintian/checks/blah

Perl code implementing run()

runs on the lab contents

calls the tag subroutine when errors are found
e /usr/share/lintian/checks/blah.desc

verbose description of the tags

Improve lintian.debian.org

® add a history to answer useful queries
» which warnings/errors appeared in my last
upload? in the last lintian upgrade?
e which package uploads fixed a given tag?
e which packages saw the same tags appear?
can I help fix them the same way?
® how to implement this?
e SQL database
e use mole?

e proof of concept here:
svn://svn.debian.org/svn/sam-hocevar/lintian

New interface example

Lintian report history for foiltex

foiltex 2.1.4a-6 (lintian 1.23.28)

* : foiltex =zource: out-of-date-standards—-version 3.6.2 (current is 3.7.2)

E: foiltex zource: builld-depends—-indep—zhould-he-huild-depends debhelper

foiltex 2.1.4a-5 (lintian 1.23.28)

-

W: foiltex source: out-of-date-standards—-version 3.6.2 (current is 3.7.2) new in this version

E: foiltex zource: builld-depends—-indep—zhould-he-huild-depends debhelper

foiltex 2.1.4a-3 (lintian 1.23.28)

: foiltex source: packace-uses—-deprecated-debhelper—-compat-verszion 3 fixed in next version
W: foiltex source: out-of-date-standards-version 3.5.10 (ecurrent is 3.7.2) fixed In next version

* BE: foiltex =ource: build-depends-indep—-should-be-bhuild-depends debhelper

Debian QA tools: 1inda

e very similar to Lintian
® same outputbt format
o different language (Python)
e slightly different checks

e which one should I usge?
e both, of course

Create linda checks

e the linda process
e similar to Lintian (lab + checks)

e Linda checks

e /usr/share/linda/checks/blah.py

Python class deriving from LindaChecker
runs on the lab contents
calls signal _error when errors are found

e /usr/share/linda/data/blah.data
list of tag types (warnings, errors...)

e /usr/share/linda/po/{en,de,..}.gmo
verbose and i18n’ed descriptions of the tags

Why create new checks?

e it’s not only about the policy
® general QA stuff
e transitions
® examples
e packages with a menu file but no .desktop
e packages with no icons
e X-Vcs control fields
e some ignored DEB BUILD OPTIONS flags
e extract font copyright information
e [insert your own personal crusade herel

Debian QA tools: piuparts

® how does it work?
® debootstraps a minimal system
e installs package
e removes package
e tests for cruft or errors
e can check upgrades or mass-upgrades

e it takes time, but you should use it!
(come on, everyone already knows you don’t
test your own packages)

Extending piuparts

® why?
® because the framework is here
e check for robustness before the user can

e what?
e corrupt /var/cache, see what happens
e check packages with /bin/sh set to zsh,
bash...
e not necessarily “bugs” for the policy, but
often worth fixing
® how?
o] don’t know yet...

Part 3

runtime bugs

@,

Test suites

e upstream software sometimes has them
® can be activated at build time? do it!
e tired of rebuilding your package? implement
DEB BUILD OPTIONS=nocheck (#416450)

e {ry to remain cross-buildable

ifeq ($(DEB _BUILD GNU TYPE), $(DEB HOST GNU TYPE))
$(MAKE) -C testsuite

endif

® you can create one yourself
® not really your job
e but bugs linked with other packages might
reappear

Fuzzing

e the idea

e alter a program’s input and watch its
behaviour

® expose bugs
e data is often user-contributed (web, e-mail)
e file parsers, interpreters are complicated
e can have security implications

e quick
® gtill not the ultimate bug-finding solution
e but any bug found is worth fixing

Presenting zzuf

e LD PRELOAD fuzzing approach

® no modification or recompilation required
e can fuzz files, but also DVDs, network...

e fully automated
e checks for SIGSEGV, SIGABRT...

e checks for memory usage
e checks for infinite loops

e reproducible behaviour
® can be used in batch mode until a bug is
found
e ideal for testsuites

zzuf example (1) - cat

||| I AN U Y
I P s B B A f f |1
! ! N P I I N O 2 I P
| | | ___/ N\ /|

ABCDEFGXIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

16/02 1:42 sam@poukram /tmp% ||

zzuf example (2) - cat

16/02 1:43 sam@poukram /tmp% zzuf -r0.038 cat readme.txt

0! 9 1A 0 0 [zb __] _® ! N
| \ | |0___~} ~ |0} (/%_ \ X (X(N[O\ d o\
| 11 | _—| [|$] | 1Y 1 | \<\ '\r"@l_) | | | | }
| IO | xé | <\ N NV /%] [<] [___<$t6] d
] -] _F_____ | 2_ 6~ "___/ _o\]/" |___/|_] \O\ < 16/

F$AC-DBHOGHIIKD INOPQRSTUVWXXZ abc$eggh)zk®mnoPqzst}lwxyr$0123456789

16/02 1:43 sam@poukram /tmp% ||

zzuf example (3) - file

16/02 2:09 sam@puukram /tmp% zzuf -d -r0.001 file /bin/ls

** zzuf debug ** libzzuf initialised for PID 27060
** zzuf debug ** fopen6d("/etc/magic", "r") [3]
ef

¥ zzuf debug ** fgets(0Oxbfbeabef, 8192, [3]} = Oxbf
** zzuf debug ** fgets(0xbfbeabef, 8192, [3]) = Oxbfbeabef
** zzuf debug ** fgets(0xbfbeabef, 8192, [3]) = Oxbfbeabef
** zzuf debug ** fgets(Oxbfbeabef, 8192, [3]) = NULL

¥ zzuf debug ** fclose([3]) =
** zzuf debug ** openb4("/usr/share/file/magic.mgc", 0) = 3
** zzuf debug ** mmap64 (NULL, 1012224, 3, 2, 3, 0) = 0xb792b00 X1lc\x04\xle\xf

1..

** zzuf debug ** close(3) =0

** zzuf debug ** open6d("/bin/1ls", 0) = 3 ‘

** zzuf debug ** read(3, 0xb78e3008, 262144) 352 "\x7fELF. ..
¥ zzuf debug ** close(3) =0

/bin/ls: ERROR: cannot happen: invalid relation &'
16/02 2:09 sam@poukram /tmp% D

zzuf example (4) - file

16/02 2:30 sam@poukram /tmp% zzuf -s0:5 -r0.01 -E/etc -E/usr/share file /bin/ls

/bin/ls: ELF 32-bit LSB executable, Intel 80386, v on 1 (5YSV), dynamically 1
inked (uses shared 1libs), corrupted section heade e

/bin/1ls: ELF 32-bit LSB executable, (5YSV), stat linked (uses shared 1libs)
, stripped

/bin/1s: data

/bin/1ls: data

/bin/1ls: ELF 32-bit LSB executable, Intel 80386, version 1 (5YSV), bad note name
size Ox80000061, dynamically linked, stripped

16/02 2:30 sam@poukram /tmp% ||

zzuf example (5) - giftopnm

16/02 9:13 sam@poukram /tmp% zzuf -q -s0:1000 -r0.001:0.1 giftopnm image.gif
zzuf[s=19,r=0.001:0.1]: signal 11 (SIGSEGV)

[1] 5328 exit 1 zzuf -q -s0:1000 -r0.001:0.1 giftopnm image.gif

1 9:13 sam@poukram /tmp% zzuf -s19 -r0.001:0.1 < image.gif > fuzzed.gif
1 :13 sam@poukram /tmp% giftopnm fuzzed.gif

[1 5389 segmentation fault giftopnm fuzzed.gif
16/02 9:13 sam@poukram /tmp%S

zzuf example (6) - antiword

16/02 9:06 sam@poukram /tmp% zzuf -Cl0 -q -s0:10000 -r0.001:0.02 -M10OO antiword

worddocument.doc
¥%* glibc detected

*¥** double free or corruption (!prev): 0x0807a020 ***

zzuf[s=19,r=0.001:0.02]: signal 6 (SIGABRT)
zzuf[s=98,r=0.001:0.02]: signal 11 (SIGSEGV)
:0.02]: signal 11 (SIGSEGV)

zzuf[s=109,r=0.001
*¥** glibc detected
zzuf[s=140,r=0.001
*¥** glibc detected
zzuf[s=188,r=0.001
zzuf[s=214,r=0.001
*** glibc detected
zzuf[s=256,r=0.001
zzuf[s=269,r=0.001
zzuf[s=270,r=0.001
zzuf[s=283,r=0.001
[1] 2818 exit 1
ocument.doc

*¥** double free or corruption (out): 0x0807a020 ***
:0.02]: signal 6 (SIGABRT)

*¥** double free or corruption_gout): 0x0807a020 ***
:0.02]: signal 6 (SIGABRT)

:0.02]: signal 9 (memory excee .
*¥** double free or corruption (!prev): 0x0807a020 ***
:0.02]: signal 6 (SIGABRT)

:0.02]: signal 11 (SIGSEGYV)
:0.02]: signal 9 (memory exceeded?)
:0.02]: signal 9 (memory exceeded?)

zzuf -Cl0 -q -s0:10000 -r0.001:0.02 -M1000 antiword wordd

16/02 9:06 sam@poukram /tmp%

Other fuzzing software

® hachoir
» http://hachoir.org/
e multiple purpose fuzzing, like zzuf
e far cleverer than random fuzzing, attacks
with knowledge of the file format
e hag parsgers for many file formats

e WebFuzzer (SQL injection, XSS), ISIC (IP
stacks), SPIK EFile, radiusfuzzer, fuzz,
netsed (network)...

® Google for “fuzzing”, “fuzz testing”,
“fault injection”...

Fuzzing as a testsuite

e why do this?
® cheap way to create a testsuite
e build-depend on a fuzzer, test at build-time
e we have different architectures with
different bugs.and behaviours
e using a different random seed each time
means better chances to find a bug

® 3 few warnings

¢ be reasonable, don’t stress the buildds!
e think before deciding to make the build fail

Test suites for GUI apps

e use the xvfb package
® has an xvfb-run script

® warnings
e you may nheed additional build dependencies
e be sure your application exits!

Thanks!

e Any questions?

Slides available on
http://sam.zoy.org/lectures/

